
A series of μ -Disulphido–Dimolybdenum(ν) Complexes: X-Ray Structure of the Novel (μ -Tetrahydrothiophene) Complex [(C₄H₈S)Cl₃Mo(μ -S₂)(μ -C₄H₈S)MoCl₃(C₄H₈S)]

David L. Hughes, Raymond L. Richards, and Caroline Shortman

A.F.R.C. Unit of Nitrogen Fixation, University of Sussex, Brighton BN1 9RQ, U.K.

The complexes $[Mo_2(\mu-S_2)Cl_6L_3]$ (L = C₄H₈O or C₄H₈S); $[Mo_2(\mu-S_2)Cl_6L_2]$ (L = C₄H₈O, MeCN, 4-MeOC₆H₄CN, 2-MeC₅H₄N, or 2,6-Me₂C₅H₃N) and $[PPh_4]_2[Mo_2S_2Cl_8]$ have been prepared; the X-ray structure of $[(C_4H_8S)Cl_3Mo(\mu-S_2)(\mu-C_4H_8S)MoCl_3(C_4H_8S)]$ shows an unusual bridging C₄H₈S ligand.

Complex compounds of molybdenum with sulphur ligands are of fundamental importance in the search for understanding of the structure and function of nitrogenase and of molybdenum-catalysed processes such as hydrodesulphurisation.¹ In the context of the latter processes, complexes of molybdenum sulphides with thiophene derivatives are of particular interest. As part of our investigation of molybdenum complexes with sulphur, dinitrogen, and hydride ligands,² we have obtained a new series of (μ -S₂)-dimolybdenum complexes which show novel features and may provide useful starting materials for further synthesis. We were interested in obtaining complexes with the S₂²⁻ ligand because of its synthetic potential in the build-up of multi-metal centres, particularly involving molybdenum and iron.³

Figure 1. Structure of $[(C_4H_8S)Cl_3Mo(\mu-S_2)(\mu-C_4H_8S)MoCl_3-(C_4H_8S)]$, showing arrangement of major occupation in disordered region about C(12)m. Principal bond dimensions (Å and °); where no e.s.d.s are given (values in parentheses), e.s.d.s are less than 0.5 in the least significant digit: Mo(1)–Mo(2) 2.769; Mo(1)–S(1) 2.641(1); Mo(1)–S(3) 2.390(1); Mo(1)–S(4) 2.401(1); Mo(1)–S(5) 2.405(1); Mo(2)–S(2) 2.644(1); Mo(2)–S(3) 2.391(1); Mo(2)–S(4) 2.408(1); Mo(2)–S(5) 2.414(1); Mo(2)–Cl 2.389(1)–2.408(1); S(4)–S(5) 1.991(1); Mo(1)–S(3)–Mo(2) 70.8; Mo(1)–S(4)–Mo(2) 70.3; Mo(1)–S(5)–Mo(2) 70.1.

A number of $(\mu$ -S₂) complexes of molybdenum have been prepared,^{1,4} but their co-ordination chemistry has been little explored. Here we report a series of $(\mu$ -S₂) complexes with a variety of co-ligands at the metal centres, including, unusually, bridging C₄H₈S.

Our synthetic route was to treat $[Mo(CO)_6]$ with S_2Cl_2 in dichloromethane, to give a dark, brown-green material, analysing as $Mo_2S_2Cl_6\cdot CH_2Cl_2$ which on treatment with ligands, L, gives the series of diamagnetic adducts $[Mo_2(\mu S_2)Cl_6L_3]$ (L = C_4H_8S or C_4H_8O ; green), $[Mo_2(\mu S_2)Cl_6L_2]$ (L = C_4H_8O , MeCN, 4-MeOC₆H₄CN, 2-MeC₅H₄N, or 2,6-Me₂C₅H₃N; brown). The green tris-adducts are of relatively low solubility and precipitate from the reaction solution; the brown adducts were isolated by concentration of the mother liquor. Addition of $[PPh_4]Cl$ gives $[PPh_4]_2[Mo(\mu S_2)Cl_8]$ (pale brown). The complexes show $v(S_2)$ in the region 590–640 cm⁻¹ of their i.r. spectra.

We have obtained green crystals of $[Mo_2(\mu-S_2)Cl_6(C_4H_8S)_3]$ and its molecular structure (Figure 1)[†] shows it to have, in

† Crystal Data for $[(C_4H_8S)Cl_3Mo(\mu-S_2)(\mu-C_4H_8S)MoCl_3(C_4H_8S)]$, $C_{12}H_{24}Cl_6Mo_2S_5$. M = 733.2, orthorhombic, space group Pbca (No. 61), a = 20.315(7), b = 18.179(6), c = 13.105(4) Å, U = 4839.6 Å³, Z = 8, $D_c = 2.012 \text{ g cm}^{-3}$, F(000) = 2896, $\mu(\text{Mo-}K_{\alpha}) = 21.0 \text{ cm}^{-1}$, λ (Mo- K_{α}) = 0.71069 Å. The crystal was a dark green square prism, mounted on glass fibre in air. Preliminary photographic examination was followed by measurements on an Enraf-Nonius CAD4 diffractometer with monochromated Mo-radiation for accurate cell dimensions (25 centred reflections with θ ca. 10.5°) and intensity data (4246 unique reflections, 722 with $I < 2\sigma_I$, θ range 1.5–25°); corrections for Lorentz-polarisation effects, absorption, and negative intensities. Structure solution from Patterson, electron density, and difference maps for all atoms (except H atoms about disordered CH₂ site in one terminal C₄H₈S ligand). Full-matrix least-squares refinement (SHELX8) on all atoms; all non-H-atoms anisotropic, H-atoms independent and isotropic except in disordered region. At convergence, R = 0.029, $R_w = 0.026$ for all 4246 reflections weighted w = σ_F^{-2} . Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1, 1986.

addition to the $(\mu$ -S₂) and two terminal C₄H₈S ligands, the unusual μ -C₄H₈S ligand.

The structure can be described as consisting of two molybdenum centres having distorted pentagonal bipyramidal co-ordination, which share a common face. The structure is similar to that of the related complex ion⁵ $[Mo_2(\mu-S_2)(\mu-SO_2)(CN)_8]^{2-}$ and clearly a family of such μ -S₂, μ -L bridged complexes is to be expected. It should be noted that a related series of C₄H₈S-bridged compounds exists for niobium and tantalum,⁶ and the complex⁷ [(Me₂S)Cl₂Mo(μ -Me₂S)(μ -Cl)₂MoCl₂(SMe₂)] is a member of the same family of compounds.

The μ -S₂²⁻ and μ -C₄H₈S ligands form a triple sulphur bridge between molybdenum atoms; the S–S bond distance [1.991(1) Å] is shorter than that of free S₂²⁻ (2.13 Å) and in the range commonly found in molybdenum complexes.^{1,4,5} The μ -C₄H₈S ligand is symmetrically disposed between the molybdenum atoms and the bridging Mo–S distance [mean 2.391(1) Å] (*trans* to Cl) is less than that of the terminal C₄H₈S ligands [mean 2.643(2) Å] (*trans* to S₂²⁻). The Mo–Mo distance (2.769 Å) is in the range (2.70–2.85 Å) generally observed in (μ -S₂)-molybdenum complexes and a molybdenum–molybdenum bonding interaction is a possible but inessential reason for the diamagnetism of these Mo^{IV} compounds. Presumably the green C_4H_8O analogue has bridging tetrahydrofuran, but the brown $[Mo_2Cl_6L_2]$ series have S_2^{2-} bridges only; further structural studies are being undertaken to clarify this point.

We thank a referee for helpful comments.

Received, 7th July 1986; Com. 922

References

- 1 'Molybdenum Enzymes,' ed. T. G. Spiro, Wiley, Chichester, 1985; A. Müller, *Polyhedron*, 1986, **5**, 323.
- 2 D. C. Povey, R. L. Richards, and C. Shortman, *Polyhedron*, 1986, 5, 369, and references therein.
- 3 K. S. Bose, P. E. Lamberty, J. E. Kovacs, E. Sinn, and B. A. Averill, *Polyhedron.*, 1986, 5, 393, and references therein.
- 4 D. Fenske, B. Czeska, C. Schumacher, R. E. Schmidt, and K. Dehnicke, Z. Anorg. Allg. Chem., 1985, 520, 7.
- 5 C. Potvin, J-M. Bregealt, and J-M. Manali, J. Chem. Soc., Chem. Commun., 1980, 664.
- 6 J. L. Templeton and R. E. McCarley, *Inorg. Chem.*, 1978, 17, 2293.
 7 P. M. Boorman, K. J. Moynihan, and R. T. Oakley, *J. Chem. Soc.*,
- Chem. Commun., 1982, 899.
 8 G. M. Sheldrick, SHELX, Program for crystal structure determination, University of Cambridge, 1976.